Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease.
نویسندگان
چکیده
Dysfunctions of Ca2+ homeostasis and of mitochondria have been studied in immortalized striatal cells from a commonly used Huntington disease mouse model. Transcriptional changes in the components of the phosphatidylinositol cycle and in the receptors for myo-inositol trisphosphate-linked agonists have been found in the cells and in the striatum of the parent Huntington disease mouse. The overall result of the changes is to delay myo-inositol trisphosphate production and to decrease basal Ca2+ in mutant cells. When tested directly, mitochondria in mutant cells behave nearly normally, but are unable to handle large Ca2+ loads. This appears to be due to the increased Ca2+ sensitivity of the permeability transition pore, which dissipates the membrane potential, prompting the release of accumulated Ca2+. Harmful reactive oxygen species, which are produced by defective mitochondria and may in turn stress them, increase in mutant cells, particularly if the damage to mitochondria is artificially exacerbated, for instance with complex II inhibitors. Mitochondria in mutant cells are thus peculiarly vulnerable to stresses induced by Ca2+ and reactive oxygen species. The observed decrease of cell Ca2+ could be a compensatory attempt to prevent the Ca2+ stress that would irreversibly damage mitochondria and eventually lead to cell death.
منابع مشابه
Calcium Handling by Endoplasmic Reticulum and Mitochondria in a Cell Model of HuntingtonTMs Disease Œ PLOS Currents Huntington Disease
Huntington disease (HD) is caused by the CAG (Q) expansion in exon 1 of the IT15 gene encoding a polyglutamine (poly-Q) stretch of the Huntingtin protein (Htt). In the wild type protein, the repeats specify a stretch of up 34 Q in the N-terminal portion of Htt. In the pathological protein (mHtt) the poly-Q tract is longer. Proteolytic cleavage of the protein liberates an N-terminal fragment con...
متن کاملDeranged neuronal calcium signaling and Huntington disease.
Huntington disease (HD) is an autosomal-dominant neurodegenerative disorder that primarily affects medium spiny striatal neurons (MSN). HD is caused by polyglutamine (polyQ) expansion (exp) in the amino-terminal region of a protein huntingtin (Htt). The connection between polyQ expansion in Httexp and MSN neurodegeneration remains elusive. Here we discuss recent data that link polyQ expansion i...
متن کاملStriatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats
An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...
متن کاملStriatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats
An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...
متن کاملMitochondria in Huntington's disease.
Huntington's disease (HD) is an inherited progressive neurodegenerative disorder associated with involuntary abnormal movements (chorea), cognitive deficits and psychiatric disturbances. The disease is caused by an abnormal expansion of a CAG repeat located in exon 1 of the gene encoding the huntingtin protein (Htt) that confers a toxic function to the protein. The most striking neuropathologic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 283 9 شماره
صفحات -
تاریخ انتشار 2008